Nano-Chitosan and Nanomedicine Approaches Against Pathogenic Coronaviruses

Authors

  • Ishrat Perveen GenEd and Molecular Biology Labs, Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54000, Pakistan Author
  • Wajid Hussain Huazhong University of Sciences and Technology, Wuhan 430074, China Author
  • Muhammad Jalil Khalid National University of Sciences and Technology, Islamabad, Pakistan Author
  • Sumbal Nazir Minhaj University Lahore, Lahore, Pakistan Author
  • Amna Mumtaz Minhaj University Lahore, Lahore, Pakistan Author
  • Yasar Saleem GenEd and Molecular Biology Labs, Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54000, Pakistan Author
  • Saba Sabahat Rashid Latif Medical College, Ferozepur Road, Lahore, Pakistan Author
  • Mehwish Najeeb The University of Lahore, Lahore, Pakistan Author
  • Sajid Hameed Department of Public Health, Green International University, Pakistan Author
  • Tallat Anwar Faridi The University of Lahore, Lahore, Pakistan Author
  • Jawad Hussain Huazhong University of Sciences and Technology, Wuhan 430074, China Author
  • Shenqi Wang Huazhong University of Sciences and Technology, Wuhan 430074, China Author

DOI:

https://doi.org/10.71005/rqx9tt78

Keywords:

Nanomedicine, Nano-chitosan, , Therapeutics, , Viral , infections , Coronavirus , infection , Nanotherapeutic , Nano-diagnostics, Pathogenesis

Abstract

Human coronaviruses (HCoVs), composed of the viruses causing severe acute respiratory illness described as the syndromes resulting from infection with respiratory coronaviruses (e.g., human immunodeficiency viruses (HIVs), whose incubation period averages 7 to 15 days and 1 to 6 months, respectively) and the newly emerged ones (e.g., human respiratory herpesvirus 6). The spread of new variants over a short period of time requires urgent and effective therapeutic strategies..This review discusses the potential of nano-chitosan biopolymeric nanoparticles as a promising therapy for combating SARS-CoV-2 and related viruses. The study examined the structural features, genome organization, and pathogenesis of the viral strains causing the current pandemic-SARS-CoV, MERS-CoV, and most recently, the viruses responsible for the current "coronavirus" syndication, namely, the newly discovered coronavirus - known as the "SAR-corona subgroup, viral genome organization, pathogenesis, and host/virus away within the SAR Coronavirus family. The role of nano-chitosan as an anti-viral agent and as a drug delivery enhancer for improved-drug bioavailability and targeted therapy is also reviewed in the context. Nano-chitosan shows a strong antiviral effect on HCoVs via enhancing drug solubility and bioavailability. Its capacity as a carrier able to transport antiviral agents, and in vaccine delivery, diagnostics, as well as in the field of therapeutic applications, is an important advance in nanomedicine. Nano-chitosan is a potential candidate for the future pandemic of coronavirus. The incorporation of nano-chitosan into therapeutic approaches may improve existing therapies as well as contribute to more effective control of viral outbreaks. Future 

References

1. Zhu N. A Novel Coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382. doi:10.1056/NEJMoa2001017

2. Noor AU, Maqbool F, Bhatti ZA, Khan AU. Epidemiology of CoViD-19 Pandemic: Recovery and mortality ratio around the globe. Pak J Med Sci. 2020;36(COVID19-S4):S79-S84. doi:10.12669/pjms.36.COVID19-S4.2660

3. Summers J, Cheng HY, Lin HH, et al. Potential lessons from the Taiwan and New Zealand health responses to the COVID-19 pandemic. Lancet Reg Health West Pac. 2020;4:100044. doi:10.1016/j.lanwpc.2020.100044

4. Donnelly CA, Malik MR, Elkholy A, Cauchemez S, Van Kerkhove MD. Worldwide Reduction in MERS Cases and Deaths since 2016. Emerg Infect Dis. 2019;25(9):1758-1760. doi:10.3201/eid2509.190143

5. Yasamineh S, Kalajahi HG, Yasamineh P, et al. An overview on nanoparticle-based strategies to fight viral infections with a focus on COVID-19. J Nanobiotechnology. 2022;20(1):440. doi:10.1186/s12951-022-01625-0

6. Song Z, Xu Y, Bao L, et al. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses. 2019;11(1):59. doi:10.3390/v11010059

7. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5

8. Akhter S, Akhtar S. Emerging coronavirus diseases and future perspectives. Virusdisease. 2020;31(2):113-120. doi:10.1007/s13337-020-00590-2

9. Liu DX, Liang JQ, Fung TS. Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). In: Encyclopedia of Virology. Elsevier; 2021:428-440. doi:10.1016/B978-0-12-809633-8.21501-X

10. Faye MN, Barry MA, Jallow MM, et al. Epidemiology of Non-SARS-CoV2 Human Coronaviruses (HCoVs) in People Presenting with Influenza-like Illness (ILI) or Severe Acute Respiratory Infections (SARI) in Senegal from 2012 to 2020. Viruses. 2022;15(1):20. doi:10.3390/v15010020

11. Cheng CC, Fann LY, Chou YC, Liu CC, Hu HY, Chu D. Nosocomial infection and spread of SARS-CoV-2 infection among hospital staff, patients and caregivers. World J Clin Cases. 2022;10(34):12559-12565. doi:10.12998/wjcc.v10.i34.12559

12. Al-Osail AM, Al-Wazzah MJ. The history and epidemiology of Middle East respiratory syndrome corona virus. Multidiscip Respir Med. 2017;12:20. doi:10.1186/s40248-017-0101-8

13. Ramadan N, Shaib H. Middle East respiratory syndrome coronavirus (MERS-CoV): A review. Germs. 2019;9(1):35-42. doi:10.18683/germs.2019.1155

14. Oh MD, Park WB, Park SW, et al. Middle East respiratory syndrome: what we learned from the 2015 outbreak in the Republic of Korea. Korean J Intern Med. 2018;33(2):233-246. doi:10.3904/kjim.2018.031

15. Mostafa A, Kandeil A, Shehata M, et al. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): State of the Science. Microorganisms. 2020;8(7):991. doi:10.3390/microorganisms8070991

16. Hui DS, E IA, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264-266. doi:10.1016/j.ijid.2020.01.009

17. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in china: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323.

18. Holshue ML, DeBolt C, Lindquist S, et al. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 2020;382(10):929-936. doi:10.1056/NEJMoa2001191

19. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513. doi:10.1016/S0140-6736(20)30211-7

20. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. The Lancet. 2020;395(10223):473-475.

21. Wu SL, Mertens AN, Crider YS, et al. Substantial underestimation of SARS-CoV-2 infection in the United States. Nat Commun. 2020;11(1):4507. doi:10.1038/s41467-020-18272-4

22. Ashour HM, Elkhatib WF, Rahman MdM, Elshabrawy HA. Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens. 2020;9(3). doi:10.3390/pathogens9030186

23. Saville JW, Berezuk AM, Srivastava SS, Subramaniam S. Three-Dimensional Visualization of Viral Structure, Entry, and Replication Underlying the Spread of SARS-CoV-2. Chem Rev. 2022;122(17):14066-14084. doi:10.1021/acs.chemrev.1c01062

24. Li X, Yuan H, Li X, Wang H. Spike protein mediated membrane fusion during SARS‐CoV‐2 infection. J Med Virol. 2023;95(1). doi:10.1002/jmv.28212

25. Naqvi AAT, Fatima K, Mohammad T, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165878. doi:10.1016/j.bbadis.2020.165878

26. Zhang Q, Xiang R, Huo S, et al. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther. 2021;6(1):233. doi:10.1038/s41392-021-00653-w

27. Sawicki SG, Sawicki DL, Siddell SG. A contemporary view of coronavirus transcription. J Virol. 2007;81(1):20-29. doi:10.1128/JVI.01358-06

28. Ziebuhr J, Thiel V, Gorbalenya AE. The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond. journal of Biological Chemistry. 2001;276(35):33220-33232.

29. Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3-20. doi:10.1038/s41580-021-00418-x

30. Malone B, Urakova N, Snijder EJ, Campbell EA. Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol. 2022;23(1):21-39. doi:10.1038/s41580-021-00432-z

31. Khan D, Terenzi F, Liu G, et al. A viral pan-end RNA element and host complex define a SARS-CoV-2 regulon. Nat Commun. 2023;14(1):3385. doi:10.1038/s41467-023-39091-3

32. Trougakos IP, Stamatelopoulos K, Terpos E, et al. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci. 2021;28(1):9. doi:10.1186/s12929-020-00703-5

33. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-192. doi:10.1007/s11684-020-0754-0

34. Wrapp D. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (1979). 2020;367.

35. Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020;126(10):1456-1474. doi:10.1161/CIRCRESAHA.120.317015

36. Grigonyte AM, Harrison C, MacDonald PR, et al. Comparison of CRISPR and Marker-Based Methods for the Engineering of Phage T7. Viruses. 2020;12(2). doi:10.3390/v12020193

37. Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: The conundrum. Diabetes Res Clin Pract. 2020;162:108132. doi:10.1016/j.diabres.2020.108132

38. Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17(5):533-535. doi:10.1038/s41423-020-0402-2

39. Diao B, Wang C, Tan Y, et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front Immunol. 2020;11:827. doi:10.3389/fimmu.2020.00827

40. Li C, He Q, Qian H, Liu J. Overview of the pathogenesis of COVID-19 (Review). Exp Ther Med. 2021;22(3):1011. doi:10.3892/etm.2021.10444

41. Møller ASW, Haug ROKBF, Westvik GBJAB, Kierulf P. Chemokine production and pattern recognition receptor (PRR) expression in whole blood stimulated with pathogen-associated molecular patterns (PAMPs). Cytokine. 2005;32 6:304-315.

42. Lebeau G, Vagner D, Frumence É, et al. Deciphering SARS-CoV-2 Virologic and Immunologic Features. Int J Mol Sci. 2020;21(16). doi:10.3390/ijms21165932

43. Dinarello CA. Historical insights into cytokines. Eur J Immunol. 2007;37 Suppl 1:S34—45. doi:10.1002/eji.200737772

44. Tavakolpour S, Mahmoudi H, Mirzazadeh A, et al. Pathogenic and protective roles of cytokines in pemphigus: A systematic review. Cytokine. 2020;129:155026. doi:10.1016/j.cyto.2020.155026

45. Zhou Y, Fu B, Zheng X, et al. Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. bioRxiv. Published online 2020. doi:10.1101/2020.02.12.945576

46. Khalil BA, Shakartalla SB, Goel S, et al. Immune Profiling of COVID-19 in Correlation with SARS and MERS. Viruses. 2022;14(1):164. doi:10.3390/v14010164

47. Liu T, Feng M, Wen Z, He Y, Lin W, Zhang M. Comparison of the Characteristics of Cytokine Storm and Immune Response Induced by SARS-CoV, MERS-CoV, and SARS-CoV-2 Infections. J Inflamm Res. 2021;14:5475-5487. doi:10.2147/JIR.S329697

48. Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Front Immunol. 2020;11. doi:10.3389/fimmu.2020.01949

49. Abassi Z, Knaney Y, Karram T, Heyman SN. The Lung Macrophage in SARS-CoV-2 Infection: A Friend or a Foe? Front Immunol. 2020;11:1312. doi:10.3389/fimmu.2020.01312

50. Huang D, Lian X, Song F, et al. Clinical features of severe patients infected with 2019 novel coronavirus: a systematic review and meta-analysis. Ann Transl Med. 2020;8(9):576. doi:10.21037/atm-20-2124

51. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846—848. doi:10.1007/s00134-020-05991-x

52. Schindell BG, Allardice M, McBride JAM, Dennehy B, Kindrachuk J. SARS-CoV-2 and the Missing Link of Intermediate Hosts in Viral Emergence - What We Can Learn From Other Betacoronaviruses. Frontiers in Virology. 2022;2. doi:10.3389/fviro.2022.875213

53. Kane Y, Wong G, Gao GF. Animal Models, Zoonotic Reservoirs, and Cross-Species Transmission of Emerging Human-Infecting Coronaviruses. Annu Rev Anim Biosci. 2023;11(1):1-31. doi:10.1146/annurev-animal-020420-025011

54. Cassaniti I, Novazzi F, Giardina F, et al. Performance of VivaDiag COVID‐19 IgM/IgG Rapid Test is inadequate for diagnosis of COVID‐19 in acute patients referring to emergency room department. J Med Virol. Published online 2020.

55. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020;382(12):1177-1179. doi:10.1056/NEJMc2001737

56. La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SM. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed Online. 2020;41(3):483-499. doi:10.1016/j.rbmo.2020.06.001

57. Hemida MG. The next‐generation coronavirus diagnostic techniques with particular emphasis on the SARS‐CoV‐2. J Med Virol. 2021;93(7):4219-4241. doi:10.1002/jmv.26926

58. Xu C, Lei C, Hosseinpour S, Ivanovski S, Walsh LJ, Khademhosseini A. Nanotechnology for the management of COVID-19 during the pandemic and in the post-pandemic era. Natl Sci Rev. 2022;9(10). doi:10.1093/nsr/nwac124

59. Khalili JS, Zhu H, Mak NSA, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID‐19. J Med Virol. 2020;92(7):740-746. doi:10.1002/jmv.25798

60. Jamkhande A, Khairnar MR, Gavali N, Patil Y, Kapare SS, Bhosale KP. A review of approved COVID-19 vaccines. Rocz Panstw Zakl Hig. 2021;72(3):245-252. doi:10.32394/rpzh.2021.0177

61. Bielecka-Oder A. Safety and Security Regulations Against Biological Threats. In: Radosavljevic V, Banjari I, Belojevic G, eds. Defence Against Bioterrorism. Springer Netherlands; 2018:151-176.

62. Ashraf BN. Economic impact of government interventions during the COVID-19 pandemic: International evidence from financial markets. J Behav Exp Finance. 2020;27:100371. doi:10.1016/j.jbef.2020.100371

63. Frey CB, Chen C, Presidente G. Democracy, Culture, and Contagion: Political Regimes and Countries Responsiveness to Covid-19. Covid Economics. 2020;18:1-20.

64. Wibowo YG, Ramadan BS, Taher T, Khairurrijal K. Advancements of Nanotechnology and Nanomaterials in Environmental and Human Protection for Combatting the COVID-19 During and Post-pandemic Era: A Comprehensive Scientific Review. Biomedical Materials & Devices. 2024;2(1):34-57. doi:10.1007/s44174-023-00086-9

65. Singh CK, Sodhi KK. The emerging significance of nanomedicine-based approaches to fighting COVID-19 variants of concern: A perspective on the nanotechnology’s role in COVID-19 diagnosis and treatment. Frontiers in Nanotechnology. 2023;4. doi:10.3389/fnano.2022.1084033

66. Wang Z, Zhang B, Ou L, et al. Extraordinary Titer and Broad Anti-SARS-CoV-2 Neutralization Induced by Stabilized RBD Nanoparticles from Strain BA.5. Vaccines (Basel). 2023;12(1):37. doi:10.3390/vaccines12010037

67. Campos EVR, Pereira AES, de Oliveira JL, et al. How can nanotechnology help to combat COVID-19? Opportunities and urgent need. J Nanobiotechnology. 2020;18(1):125. doi:10.1186/s12951-020-00685-4

68. Idris A, Davis A, Supramaniam A, et al. A SARS-CoV-2 targeted siRNA-nanoparticle therapy for COVID-19. Molecular Therapy. 2021;29(7):2219-2226. doi:10.1016/j.ymthe.2021.05.004

69. Rasmi Y, Mosa OF, Alipour S, et al. Significance of Cardiac Troponins as an Identification Tool in COVID-19 Patients Using Biosensors: An Update. Front Mol Biosci. 2022;9. doi:10.3389/fmolb.2022.821155

70. Tian B, Gao F, Fock J, Dufva M, Hansen MF. Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosens Bioelectron. 2020;165:112356. doi:10.1016/j.bios.2020.112356

71. Chue-Gonçalves M, Pereira GN, Faccin-Galhardi LC, Kobayashi RKT, Nakazato G. Metal Nanoparticles against Viruses: Possibilities to Fight SARS-CoV-2. Nanomaterials. 2021;11(11):3118. doi:10.3390/nano11113118

72. Zhao Z, Xiao Y, Xu L, et al. Glycyrrhizic Acid Nanoparticles as Antiviral and Anti-inflammatory Agents for COVID-19 Treatment. ACS Appl Mater Interfaces. 2021;13(18):20995-21006. doi:10.1021/acsami.1c02755

73. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57. doi:10.1038/nprot.2008.211

74. Asdaq SMB, Ikbal AMA, Sahu RK, et al. Nanotechnology Integration for SARS-CoV-2 Diagnosis and Treatment: An Approach to Preventing Pandemic. Nanomaterials. 2021;11(7):1841. doi:10.3390/nano11071841

75. Hassanpour M, Rezaie J, Nouri M, Panahi Y. The role of extracellular vesicles in COVID-19 virus infection. Infection, Genetics and Evolution. 2020;85:104422. doi:10.1016/j.meegid.2020.104422

76. Shukla BK, Tyagi H, Bhandari H, Garg S. Nanotechnology‐Based Approach to Combat Pandemic COVID 19: A Review. Macromol Symp. 2021;397(1). doi:10.1002/masy.202000336

77. Chowdhury NK, Deepika, Choudhury R, et al. Nanoparticles as an effective drug delivery system in COVID-19. Biomedicine & Pharmacotherapy. 2021;143:112162. doi:10.1016/j.biopha.2021.112162

78. Vahedifard F, Chakravarthy K. Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. Emergent Mater. 2021;4(1):75-99. doi:10.1007/s42247-021-00168-8

79. Cavalcanti IDL, Cajubá de Britto Lira Nogueira M. Pharmaceutical nanotechnology: which products are been designed against COVID-19? Journal of Nanoparticle Research. 2020;22(9):276. doi:10.1007/s11051-020-05010-6

80. Skariyachan S, Gopal D, Deshpande D, Joshi A, Uttarkar A, Niranjan V. Carbon fullerene and nanotube are probable binders to multiple targets of SARS-CoV-2: Insights from computational modeling and molecular dynamic simulation studies. Infection, Genetics and Evolution. 2021;96:105155. doi:10.1016/j.meegid.2021.105155

81. Pandey D, Bansal S, Goyal S, et al. Psychological impact of mass quarantine on population during pandemics—The COVID-19 Lock-Down (COLD) study. PLoS One. 2020;15(10):e0240501. doi:10.1371/journal.pone.0240501

82. Vahedifard F, Chakravarthy K. Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. Emergent Mater. 2021;4(1):75-99. doi:10.1007/s42247-021-00168-8

83. Li L, Huang T, Wang Y, et al. Response to Char’s comment: Comment on Li et al: COVID‐19 patients’ clinical characteristics, discharge rate, and fatality rate of meta‐analysis. J Med Virol. 2020;92(9):1433-1433. doi:10.1002/jmv.25924

84. Almanza-Reyes H, Moreno S, Plascencia-López I, et al. Evaluation of silver nanoparticles for the prevention of SARS-CoV-2 infection in health workers: In vitro and in vivo. PLoS One. 2021;16(8):e0256401. doi:10.1371/journal.pone.0256401

85. Khalil NM, Carraro E, Cótica LF, Mainardes RM. Potential of polymeric nanoparticles in AIDS treatment and prevention. Expert Opin Drug Deliv. 2011;8(1):95-112. doi:10.1517/17425247.2011.543673

86. Cohen AA, Gnanapragasam PNP, Lee YE, et al. Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science (1979). 2021;371(6530):735-741. doi:10.1126/science.abf6840

87. Rasmi Y, Mosa OF, Alipour S, et al. Significance of Cardiac Troponins as an Identification Tool in COVID-19 Patients Using Biosensors: An Update. Front Mol Biosci. 2022;9. doi:10.3389/fmolb.2022.821155

88. Kumar M, Joshi M, Patel AK, Joshi CG. Unravelling the early warning capability of wastewater surveillance for COVID-19: A temporal study on SARS-CoV-2 RNA detection and need for the escalation. Environ Res. 2021;196:110946. doi:10.1016/j.envres.2021.110946

89. Ghaemi N, Sverdlov A, Shelton R, Litman R. Efficacy and safety of mij821 in patients with treatment-resistant depression: Results from a randomized, placebo-controlled, proof-of-concept study. European Psychiatry. 2021;64(S1):S334-S335. doi:10.1192/j.eurpsy.2021.897

90. Wan Mahari WA, Peng W, Nam WL, et al. A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. J Hazard Mater. 2020;400:123156. doi:10.1016/j.jhazmat.2020.123156

91. Keshmiri Neghab H, Azadeh SS, Soheilifar MH, Dashtestani F. Nanoformulation-Based Antiviral Combination Therapy for Treatment of COVID-19. Avicenna J Med Biotechnol. 2020;12(4):255-256.

92. Tan Q, He L, Meng X, et al. Macrophage biomimetic nanocarriers for anti-inflammation and targeted antiviral treatment in COVID-19. J Nanobiotechnology. 2021;19(1):173. doi:10.1186/s12951-021-00926-0

93. Foffa D, Dunne EM, Nesbitt SJ, et al. Scleromochlus and the early evolution of Pterosauromorpha. Nature. 2022;610(7931):313-318. doi:10.1038/s41586-022-05284-x

94. Mufamadi MS, Ngoepe MP, Nobela O, et al. Next-Generation Vaccines: Nanovaccines in the Fight against SARS-CoV-2 Virus and beyond SARS-CoV-2. Biomed Res Int. 2023;2023:1-11. doi:10.1155/2023/4588659

95. Sarkar PK, Das Mukhopadhyay C. Ayurvedic metal nanoparticles could be novel antiviral agents against SARS-CoV-2. Int Nano Lett. 2021;11(3):197-203. doi:10.1007/s40089-020-00323-9

96. Rashidzadeh H, Danafar H, Rahimi H, et al. Nanotechnology Against The Novel Coronavirus (Severe Acute Respiratory Syndrome Coronavirus 2): Diagnosis, Treatment, Therapy and Future Perspectives. Nanomedicine. 2021;16(6):497-516. doi:10.2217/nnm-2020-0441

97. Skariyachan S, Gopal D, Deshpande D, Joshi A, Uttarkar A, Niranjan V. Carbon fullerene and nanotube are probable binders to multiple targets of SARS-CoV-2: Insights from computational modeling and molecular dynamic simulation studies. Infection, Genetics and Evolution. 2021;96:105155. doi:10.1016/j.meegid.2021.105155

98. Kashyap U, Saha SK. Enhanced Design of PPE Based on Electrostatic Principle to Eliminate Viruses (SARS-CoV-2). Transactions of the Indian National Academy of Engineering. 2020;5(2):337-341. doi:10.1007/s41403-020-00101-1

99. Unal MA, Bayrakdar F, Nazir H, et al. Graphene Oxide Nanosheets Interact and Interfere with SARS‐CoV‐2 Surface Proteins and Cell Receptors to Inhibit Infectivity. Small. 2021;17(25). doi:10.1002/smll.202101483

100. Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res. 2020;7(1):11. doi:10.1186/s40779-020-00240-0

101. Rabiee N, Ahmadi S, Akhavan O, Luque R. Correction: Rabiee et al. Silver and Gold Nanoparticles for Antimicrobial Purposes against Multi-Drug Resistance Bacteria. Materials 2022, 15, 1799. Materials. 2024;17(12):2841. doi:10.3390/ma17122841

102. Qiu J, Shen B, Zhao M, Wang Z, Xie B, Xu Y. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: implications and policy recommendations. Gen Psychiatr. 2020;33(2):e100213. doi:10.1136/gpsych-2020-100213

103. Zuo H, Deng S, Huang Z, Li H. Numerical Investigation of Binary Fluid Flow through Propped Fractures by Lattice Boltzmann Method. International Journal of Geomechanics. 2020;20(7). doi:10.1061/(ASCE)GM.1943-5622.0001629

104. Zhu X, Wang X, Han L, et al. Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosens Bioelectron. 2020;166:112437. doi:10.1016/j.bios.2020.112437

105. Seo G, Lee G, Kim MJ, et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano. 2020;14(4):5135-5142. doi:10.1021/acsnano.0c02823

106. Moitra P, Alafeef M, Dighe K, Frieman MB, Pan D. Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS Nano. 2020;14(6):7617-7627. doi:10.1021/acsnano.0c03822

107. Derakhshan MA, Amani A, Faridi-Majidi R. State-of-the-Art of Nanodiagnostics and Nanotherapeutics against SARS-CoV-2. ACS Appl Mater Interfaces. 2021;13(13):14816-14843. doi:10.1021/acsami.0c22381

108. Bayin Q, Huang L, Ren C, Fu Y, Ma X, Guo J. Anti-SARS-CoV-2 IgG and IgM detection with a GMR based LFIA system. Talanta. 2021;227:122207. doi:10.1016/j.talanta.2021.122207

109. Gopal J, Muthu M, Pushparaj SSC, Sivanesan I. Anti-COVID-19 Credentials of Chitosan Composites and Derivatives: Future Scope? Antibiotics. 2023;12(4):665. doi:10.3390/antibiotics12040665

110. Yee Kuen C, Masarudin MJ. Chitosan Nanoparticle-Based System: A New Insight into the Promising Controlled Release System for Lung Cancer Treatment. Molecules. 2022;27(2):473. doi:10.3390/molecules27020473

111. Pyrć K, Milewska A, Duran EB, et al. SARS-CoV-2 inhibition using a mucoadhesive, amphiphilic chitosan that may serve as an anti-viral nasal spray. Sci Rep. 2021;11(1):20012. doi:10.1038/s41598-021-99404-8

112. Safarzadeh M, Sadeghi S, Azizi M, Rastegari-Pouyani M, Pouriran R, Haji Molla Hoseini M. Chitin and chitosan as tools to combat COVID-19: A triple approach. Int J Biol Macromol. 2021;183:235-244. doi:10.1016/j.ijbiomac.2021.04.157

113. Dilnawaz F, Acharya S, Kanungo A. A clinical perspective of chitosan nanoparticles for infectious disease management. Polymer Bulletin. 2024;81(2):1071-1095. doi:10.1007/s00289-023-04755-z

114. Beach MA, Nayanathara U, Gao Y, et al. Polymeric Nanoparticles for Drug Delivery. Chem Rev. 2024;124(9):5505-5616. doi:10.1021/acs.chemrev.3c00705

115. Tousian B, Khosravi AR. Chitosan-based pulmonary particulate systems for anticancer and antiviral drug carriers: A promising delivery for COVID-19 vaccines. Results Chem. 2023;6:101146. doi:10.1016/j.rechem.2023.101146

116. Ait Hamdan Y, El Amerany F, Desbrières J, Aghrinane A, Oudadesse H, Rhazi M. The evolution of the global COVID-19 epidemic in Morocco and understanding the different therapeutic approaches of chitosan in the control of the pandemic. Polymer Bulletin. 2023;80(10):10633-10659. doi:10.1007/s00289-022-04579-3

117. Hutchinson GB, Abiona OM, Ziwawo CT, et al. Nanoparticle display of prefusion coronavirus spike elicits S1-focused cross-reactive antibody response against diverse coronavirus subgenera. Nat Commun. 2023;14(1):6195. doi:10.1038/s41467-023-41661-4

118. Kianpour M, Akbarian M, Uversky VN. Nanoparticles for Coronavirus Control. Nanomaterials. 2022;12(9):1602. doi:10.3390/nano12091602

119. Chen X, Han W, Wang G, Zhao X. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. Int J Biol Macromol. 2020;164:331-343. doi:10.1016/j.ijbiomac.2020.07.106

120. Iqbal M, Lin W, Jabbal-Gill I, Davis SS, Steward MW, Illum L. Nasal delivery of chitosan–DNA plasmid expressing epitopes of respiratory syncytial virus (RSV) induces protective CTL responses in BALB/c mice. Vaccine. 2003;21(13-14):1478-1485. doi:10.1016/S0264-410X(02)00662-X

121. Wieler L, Vittos O, Mukherjee N, Sarkar S. Reduction in the COVID-19 pneumonia case fatality rate by silver nanoparticles: A randomized case study. Heliyon. 2023;9(3):e14419. doi:10.1016/j.heliyon.2023.e14419

Downloads

Published

2025-10-31

How to Cite

[1]
Perveen, I. et al. 2025. Nano-Chitosan and Nanomedicine Approaches Against Pathogenic Coronaviruses. Atlantic Journal of Life Sciences. 2025, 1 (Oct. 2025). DOI:https://doi.org/10.71005/rqx9tt78.