Molecular Profiling of Multidrug-Resistant Escherichia coli Harboring tetA and eaeV3 Genes in Poultry Production System

Authors

  • Hosen Md. Aoulad Hajee Mohammad Danesh Science and Technology University, Dinajpur -5200,Bangladesh Author
  • Mahe Afroz Department of Microbiology, Facuulty of Veterinary and Animal Science, Hajee Mohammad Danesh Science & Technology University, Dinajpur-5200, Bangladesh Author
  • Nazmi Ara Rumi Department of Microbiology, Facuulty of Veterinary and Animal Science, Hajee Mohammad Danesh Science & Technology University, Dinajpur-5200, Bangladesh Author
  • Md. Aoulad Hosen Department of Microbiology, Facuulty of Veterinary and Animal Science, Hajee Mohammad Danesh Science & Technology University, Dinajpur-5200, Bangladesh Author
  • Md. Shajedur Rahman Department of Medicine, Surgery and Obstetrics, Facuulty of Veterinary and Animal Science, Hajee Mohammad Danesh Science & Technology University, Dinajpur-5200, Bangladesh Author
  • Most. Deloara Begum Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science & Technology University, Dinajpur-5200, Bangladesh Author
  • Md. Shiblee Sadik Sabuj Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science & Technology University, Dinajpur-5200, Bangladesh Author
  • Nasrin Sultana Tonu Upazila Livestock Office and Veterinary Hospital, Barura, Cumilla Author
  • Md. Hasanul Baker Tamlikha Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science & Technology University, Dinajpur-5200, Bangladesh Author

DOI:

https://doi.org/10.71005/xfdn0c79

Keywords:

Serogrouping , Bangladesh, Poultry, Microbial, Resistance

Abstract

Escherichia coli, a common gastrointestinal pathogen in warm-blooded animals, poses a significant challenge topoultry health. This study investigated the prevalence, serogroup distribution, and molecular characteristics of multidrug-resistant (MDR) E. coli in dead chickens from Dinajpur, Bangladesh. A total of 131 organ samples (intestine, liver, heart, lungs, oviduct) were analyzed using cultural, biochemical (Indole, MR-VP, TSI, citrate), and molecular (PCR) methods. E. coli was detected in 41.22% (n=54)of samples, with the highest prevalence in intestines (90%) from Basherhat (p=0.021). Molecular identification of the isolates was confirmed by 16S rRNA gene sequencing (585 bp). The resistance genes TetA and EAEV3 were detected in 29.6% and 14.8% of isolates, respectively. Serogroup D was the most prevalent (61.11%). All E. coli showing 100% resistance to several classes, including penicillins, cephalosporins, macrolides, and tetracyclines. In contrast, they remained 100% susceptible to fluoroquinolones (ciprofloxacin, norfloxacin) and aminoglycosides (gentamicin, streptomycin). Among the isolates, 34 (68.51%) were classified as MDR. The findings underscore the escalating threat of antimicrobial resistance (AMR), which poses significant challenges to poultry health management. The results also raise public health concerns due to the potential transmission of resistant E. coli through the consumption of contaminated poultry products. Therefore, implementing measures such as restricting antibiotic misuse, strengthening surveillance, and improving farm biosecurity is critical to combat the AMR crisis in this poultry sector.

References

1. Ahmed, A. M., Shimabukuro, H., & Shimamoto, T. (2009). Isolation and molecular characterization of multidrug‐resistant strains of Escherichia coli and Salmonella from retail chicken meat in Japan. Journal of food science, 74(7), M405-M410.

2. Ahmed, A. M., Shimamoto, T., & Shimamoto, T. (2013). Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli isolated from septicemic broilers. International Journal of Medical Microbiology, 303(8), 475-483.

3. Aklilu, E., Nurhardy, A. D., Mokhtar, A., Zahirul, I. K., & Rokiah, A. S. (2016). Molecular detection of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE) isolates in raw chicken meat. International Food Research Journal, 23(1), 322.

4. Akond, M. A., Alam, S., Hassan, S. M. R., & Shirin, M. (2009). Antibiotic resistance of Escherichia coli isolated from poultry and poultry environment of Bangladesh. Internet Journal of food safety, 11, 19-23.

5. Azam MR, Hosen MA, Shil LK, Das NK, Rumi NA, & Hossain MK. Detection of Zoonotic Potential of Salmonella and Escherichia coli Isolated from Ostriches and Determine Their Antibiogram Study. Am J Pure Appl Sci. 2023; 5(4): 56-63

6. Badr, H., Samir, A., El-Tokhi, E. I., Shahein, M. A., Rady, F. M., Hakim, A. S., ... & Ali, S. F. (2022). Phenotypic and genotypic screening of colistin resistance associated with emerging pathogenic Escherichia coli isolated from poultry. Veterinary Sciences, 9(6), 282.

7. Barnes, H. J., Nolan, L. K., & Vaillancourt, J. P. (2008). Colibacillosis. Diseases of Poultry, 11, 691-732.

8. Biswas, P. K., Uddin, G. M. N., Barua, H., Roy, K., Biswas, D., Ahad, A., & Debnath, N. C. (2006). Causes of loss of Sonali chickens on smallholder households in Bangladesh. Preventive veterinary medicine, 76(3-4), 185-195.

9. Brown, A.E. (2004). Benson’s Microbiological Applications; Laboratory Manual In General Microbiology. Ninth edition. McGraw Hill Publication. P.252.

10. Castanon, J. I. R. (2007). History of the use of antibiotic as growth promoters in European poultry feeds. Poultry Science, 86(11), 2466-2471.

11. Chen J & amp; MW Griffiths, 2001. Detection of Salmonella and simultaneous detection of Salmonella and Shiga-like toxin producing Escherichia coli using the magnetic capture hybridization polymerase chain reaction. Lett. Appl. Microbiol.32: 7-11.

12. Chen, X., Zhang, W., Yin, J., Zhang, N., Geng, S., Zhou, X., ... & Jiao, X. (2014). Escherichia coli isolates from sick chickens in China: changes in antimicrobial resistance between 1993 and 2013. The Veterinary Journal, 202(1), 112-115.

13. Clinical and Laboratory Standard Institute. Performance Standards for Antimicrobial Susceptibility Testing. CLSI document M100 31th edition. Wayne, Clinical and Laboratory Standard Institute; 2021.

14. Das, P. M., Rajib, D. M. M., Noor, M. O. N. I. R. A., & Islam, M. R. (2004, June). A retrospective analysis on the proportional incidence of poultry diseases in greater Mymensingh district of Bangladesh. In Proceedings of Seminar (Vol. 2005, p. 33).

15. De Medici D, Croci L, Delibato E, Di Pasquale S, Filetici E, Toti L. Evaluation of DNA extraction methods for use in combination with SYBR green I real-time PCR to detect Salmonella enterica serotype enteritidis in poultry. Appl and Env Microbiol. 2003; 69(6):3456-61.

16. Department of Livestock Services (DLS) (2024). Livestock economy at a glance 2023-2024, Ministry of Fisheries and Livestock, Bangladesh. Available at: https://dls.gov.bd/site/page/22b1143b-9323-44f8-bfd8-647087828c9b/Livestock-Economy

17. Dibner, J. J., & Richards, J. D. (2005). Antibiotic growth promoters in agriculture: history and mode of action. Poultry Science, 84(4), 634-643.

18. Dziva, F., & Stevens, M. P. (2008). Colibacillosis in poultry: unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathology, 37(4), 355-366.

19. Ewers, C., Janssen, T., Kiessling, S., Philipp, H. C., & Wieler, L. H. (2004). Rapid detection of virulence-associated genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction. Avian Diseases, 48(3), 406-416.

20. Ezekiel, C. N., Olarinmoye, A. O., Oyinloye, J. M. A., Olaoye, O. B., & Edun, A. O. (2011). Distribution, antibiogram and multidrug resistance in Enterobacteriaceae from commercial poultry feeds in Nigeria. African journal microbiology research, 5(3), 294-301. https://doi.org/10.5897/AJMR10.848

21. FDA (2017). Guidance for Industry #213: New animal drugs and new animal drug combination products administered in or on medicated feed or drinking water of food-producing animals. U.S. Food and Drug Administration.

22. Gautam, S. K., Suresh Kumar, S., Batish, V. K., Grover, S., & Mohanty, A. K. (2012). Rapid and sensitive detection of Escherichia coli in milk by 16S rRNA gene targeted PCR. Indian Journal of Animal Sciences, 82(2), 204.

23. Goudarztalejerdi, A., Mohammadzadeh, A., Najafi, S. V., Nargesi, F., & Joudari, S. (2020). Serogrouping, phylotyping, and virulence genotyping of commensal and avian pathogenic Escherichia coli isolated from broilers in Hamedan, Iran. Comparative Immunology, Microbiology and Infectious Diseases, 73, 101558.

24. Hasina, B. (2006). Enteropathotypic characterization of Escherichia coli isolated from diarrhoeic calves and their antibiogram study. M. S. Thesis, Department of Microbiology and Hygiene, BAU, Mymensingh, p. 68.

25. Hossain, M. J., Attia, Y., Ballah, F. M., Islam, M. S., Sobur, M. A., Islam, M. A., ... & Rahman, M. T. (2021). Zoonotic significance and antimicrobial resistance in Salmonella in poultry in Bangladesh for the period of 2011–2021. Zoonoticdis, 1(1), 3-24.

26. Hossain, M., Hoda, N., Hossen, M. J., Hasan, M. M., Rahman, S. M. E., & Kabir, S. L. (2015). Assessment of bacterial load of poultry meat used at dining hall of Bangladesh Agricultural University campus. Asian Journal of Medical and Biological Research, 1(1), 9-16.

27. Hubbert, W. T., Hagstad, H. V., Spangler, E., Hinton, M. H., & Hughes, K. L. (1996). Food safety and quality assurance: foods of animal origin (No. Ed. 2, pp. xiii+-305).

28. Islam, S., Islam, M. A., Sultana, S., Islam, R., Rahman, M. H., & Khatun, R (2024). Assessing the Productivity of BLRI-Developed Native Ducks at the Community Level Compared to Indigenous Ducks in Conventional Farming Systems.

29. Jakaria, A. T. M., Islam, M. A., & Khatun, M. M. (2012). Prevalence, characteristics and antibiogram profiles of Escherichia coli isolated from apparently healthy chickens in Mymensingh, Bangladesh. Microbes and Health., 1: 27-29.

30. Jiang, H. X., Lü, D. H., Chen, Z. L., Wang, X. M., Chen, J. R., Liu, Y. H., ... & Zeng, Z. L. (2011). High prevalence and widespread distribution of multi-resistant Escherichia coli isolates in pigs and poultry in China. The veterinary journal, 187(1), 99-103.

31. Joseph, J., Magee, C., Jia, L., Zhang, L., Adhikari, P., & Ramachandran, R. (2024). Phenotypic virulence characterization of avian pathogenic Escherichia coli (APEC) isolates from broiler breeders with colibacillosis in Mississippi. Journal of Applied Microbiology, 135(5), lxae032.

32. Kabir, S.M.L. (2010). Avian colibacillosis and salmonellosis: A closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. International Journal of Environmental Research and Public Health.7 (1) :89-114.

33. Kapil, A. (2004). The challenge of antimicrobial resistance need to contemplate. Indian Journal of Medical Research .121:83-91.

34. Kaul, L., Kaul, L.P., Shah, M.N. 1992. An outbreak of colibacillosis in chicks at an organized poultry farm under semiarid zone of north Gujarat. Indian Vet. J., 69:373-374.

35. Khalid, A.M. (1990). Studies on natural and experimental E. coli infection in chickens. J. Egypt. Vet Med. Ass. 50 (3):379-389

36. Kithsiri, L.B. (2013). Present status of family poultry production and status of disease prevalence in western province of Sri Lanka

37. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution, 33(7), 1870-1874.

38. Lemlem, M., Aklilu, E., Mohamed, M. et al. Phenotypic and genotypic characterization of colistin-resistant Escherichia Coli with mcr-4, mcr-5, mcr-6, and mcr-9 genes from broiler chicken and farm environment. BMC Microbiol 23, 392 (2023). https://doi.org/10.1186/s12866-023-03118-y

39. Mellata, M. (2013). Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathogens and Disease, 10(11), 916-932.

40. Mukhopadhyaya, B. N., & Mishra, S. K. (1992). Incidence of colibacillosis in chicks in some poultry pockets of West Bengal. Indian J. Poult. Sci., 27(2):103-107

41. Nayem, N. I. (2020). Sustainability of Avatro Group as a startup in the challenging market structure of Bangladesh. BRAC University.

42. Nolan, L. K., Barnes, H. J., Vaillancourt, J. P., Abdul-Aziz, T., & Logue, C. M. (2020). Colibacillosis. Diseases of Poultry, 14, 770-830.

43. Nolan, L.K. (2013). Colibacillosis. Diseases of Poultry. 13th ed. Ch. 18. Ames: Wiley-Blackwell, Print.

44. Olarinmoye, A. O., Oladele, O. O., Adediji, A. A., Ntiwunka, U. G., & Tayo, G. O. (2013). Antibiograms of avian pathogenic Escherichia coli isolates from commercial layers with colibacillosis in Southwest Nigeria.

45. Pouillot, F., Chomton, M., Blois, H., Courroux, C., Noelig, J., Bidet, P., ... & Bonacorsi, S. (2012). Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b: H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrobial Agents and Chemotherapy, 56(7), 3568-3575.

46. Sahoo, T. K., Sahoo, L., Sarangi, L. N., Panda, S. K., & Panda, H. K. (2012). Prevalence, isolation, characterisation and antibiogram study of pathogenic Escherichia coli from different poultry farms of Odisha. Journal of Advanced Veterinary Research, 2(3), 169-172.

47. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425.

48. Samad, M.A. (2005). Poultry Science and Medicine. 1st Pub., LEP No. 10, BAU Campus, Mymensingh, Bangladesh.

49. Sarker, M. A. H., Jahan, M., Parvin, M. N., Malek, M. A., & Hossain, M. T. (2012). Identification of bacterial flora isolated from apparently healthy water birds of Dhaka Zoo of Bangladesh. Bangladesh Journal of Veterinary Medicine. 10(1&2):21-26.

50. Schouler, C., Schaeffer, B., & Brée, A. (2012). Diagnostic strategy for identifying avian pathogenic Escherichia coli based on four patterns of virulence genes. Journal of Clinical Microbiology, 50(5), 1673-1678.

51. Shuchismita, C., Kashyap, S.K., and Ghorui, S.K. 2007. Resistotyping of different Escherichia coli isolates of livestock and poultry. Indian J. Anim. Sci., 77: 163-166.

52. Sudershan, R. V., Naveen Kumar, R., Kashinath, L., Bhaskar, V., & Polasa, K. (2012). Microbiological hazard identification and exposure assessment of poultry products sold in various localities of Hyderabad, India. The Scientific World Journal, 2012(1), 736040.

53. Tsen, H. Y., Lin, C. K., & Chi, W. R. (1998). Development and use of 16S rRNA gene targeted PCR primers for the identification of Escherichia coli cells in water. Journal of applied microbiology, 85(3), 554-560.

54. Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., ... & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649-5654.

55. Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., ... & Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science, 365(6459), eaaw1944.

56. Vandekerchove, D., Herdt, P. D., Laevens, H., Butaye, P., Meulemans, G., & Pasmans, F. (2004). Significance of interactions between Escherichia coli and respiratory pathogens in layer hen flocks suffering from colibacillosis-associated mortality. Avian Pathology, 33(3), 298-302.

57. Xinhong Dou, Jiansen Gong, Xiangan Han, Ming Xu, Haiyu Shen, Di Zhang, Linlin Zhuang, Jiasheng Liu, Jianmin Zou, Characterization of avian pathogenic Escherichia coli isolated in eastern China, Gene, Volume 576, Issue 1, Part 2, 2016, Pages 244-248, ISSN 0378-1119, https://doi.org/10.1016/j.gene.2015.10.012.

58. Younis, G., Awad, A., & Samir, S. (2017). PREVALENCE AND VIRULENCE PROFILE OF AVIAN PATHOGENIC E. COLI ISOLATED from CLINICALLY DISEASED BROILER CHICKEN. Mansoura Veterinary Medical Journal, 18(1), 419-430.

Downloads

Published

2025-12-30

Issue

Section

Original research

How to Cite

[1]
Md. Aoulad, H. et al. 2025. Molecular Profiling of Multidrug-Resistant Escherichia coli Harboring tetA and eaeV3 Genes in Poultry Production System. Atlantic Journal of Life Sciences. 2025, 1 (Dec. 2025). DOI:https://doi.org/10.71005/xfdn0c79.