Computational Investigation of Triphenylmethane Acidic Dye for Textile Applications Using DFT and TDDFT Methods

Authors

  • Majid Ali Department of Chemistry, Riphah International university, Faisalabad Pakistan Author
  • Muhammad Suleman Department of Chemistry, Riphah International University, Faisalabad Campus, Pakistan Author
  • Sidra Ghafoor Department of chemistry and chemical engineering, Shandong University Jinan, China Author
  • Shagufta Nawaz Department of Chemistry, Riphah International University, Faisalabad Campus, Pakistan Author
  • Hafsa Amjad University of Sialkot, Sialkot, Pakistan Author
  • Hamid Mehmood Department of Chemistry, Riphah International University, Faisalabad Campus, Pakistan Author
  • Muqadas Majeed Department of Chemistry, Riphah International University, Faisalabad Campus, Pakistan Author
  • Nooria Fatima Department of Chemistry, Riphah International University, Faisalabad Campus, Pakistan Author
  • Zunaira Rahat Gill University of Education Lahore, Faisalabad campus, Pakistan Author
  • Unsa Maqbool Department of Chemistry, Riphah International University, Faisalabad Campus, Pakistan Author
  • Saira Najam Department of Chemistry, Riphah International University, Faisalabad Campus, Pakistan Author

DOI:

https://doi.org/10.71005/292yr652

Keywords:

Density Functional Theory (DFT), Acidic dye, Solvent effects, Electronic properties, UV-Vis spectroscopy, Textile applications

Abstract

A comprehensive computational investigation of a triphenylmethane-acidic dye using Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) at the B3LYP/6-31G(d) level was conducted. The basic goal was to interpret the properties, i.e., structural, electronic, and spectroscopic properties in several media (gaseous, aqueous, and acetic acid) and to evaluate the suitability for textile applications. The geometric optimization of the acidic dye under observation undergoes solvent induced changes, with the contraction of bond length (e.g., C1–C2 shortened from 1.4039 Å in gas to 1.3872 Å in water) and the angular variation of bonds (e.g., C2–C1–C6 decreased from 120.67° to 120.59° in ethanol), depicting the high conformational stability in polar solvents. The TD-DFT simulations showed a bathochromic shift and a high molar absorptivity (λmax ~245 nm, absorbance ~3200), indicating UV absorption in aqueous environments. The oscillator strength of strong π→π* electronic transitions in the 240–250 nm range further confirms the conjugated system's ability to interact effectively with light, an essential characteristic for dye brilliance and intensity on textile substrates. HOMO–LUMO analysis showed a solvent-dependent narrowing of the energy gap (ΔE), from 3.82 eV in the gas phase to slightly reduced values in ethanol and water, facilitating intramolecular charge transfer and favorable dye–fiber interactions. Mulliken population analysis and molecular electrostatic potential (MEP) mapping highlighted nucleophilic and electrophilic regions, consistent with expected binding behavior to textile fibers in solvents. IR vibrational analysis confirmed structural consistency across 700–3500 cm⁻¹ in interaction with solvents. These findings show that solvent polarity significantly affects the dye's electronic structure and spectroscopic response, providing critical insights for its application in water-based or ethanol-assisted textile processing. The study affirms the value of DFT/TDDFT modeling for pre-screening dye candidates, enabling more efficient, cost-effective, and targeted dye design for optimal textile performance.

References

Adeel, S., Usman, M., Haider, W., Saeed, M., Muneer, M., & Ali, M. (2015). Dyeing of gamma irradiated cotton using Direct Yellow 12 and Direct Yellow 27: improvement in colour strength and fastness properties. Cellulose, 22(3), 2095-2105.

Ali, M., Mansha, A., Asim, S., Zahid, M., Usman, M., & Ali, N. (2018). DFT Study for the Spectroscopic and Structural Analysis of p‐Dimethylaminoazobenzene. Journal of Spectroscopy, 2018(1), 9365153.

Amat, A., Miliani, C., Romani, A., & Fantacci, S. (2015). DFT/TDDFT investigation on the UV-vis absorption and fluorescence properties of alizarin dye. Physical Chemistry Chemical Physics, 17(9), 6374-6382.

Ayare, N. N., Sharma, S., Sonigara, K. K., Prasad, J., Soni, S. S., & Sekar, N. (2020). Synthesis and computational study of coumarin thiophene-based D-π-A azo bridge colorants for DSSC and NLOphoric application. Journal of Photochemistry and Photobiology A: Chemistry, 394, 112466. doi:https://doi.org/10.1016/j.jphotochem.2020.112466

Bejan, A.-E., Constantin, C.-P., & Damaceanu, M.-D. (2024). Triphenylmethane based-polyimines with multiple switching characteristics triggered by pH, photoirradiation and electrical current. Progress in Organic Coatings, 187, 108114. doi:https://doi.org/10.1016/j.porgcoat.2023.108114

Bendjabeur, S., Zouaghi, R., Zouchoune, B., & Sehili, T. (2018). DFT and TD-DFT insights, photolysis and photocatalysis investigation of three dyes with similar structure under UV irradiation with and without TiO2 as a catalyst: Effect of adsorption, pH and light intensity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 190, 494-505. doi:https://doi.org/10.1016/j.saa.2017.09.045

Benkhaya, S., M' rabet, S., & El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107891. doi:https://doi.org/10.1016/j.inoche.2020.107891

Benkhaya, S., M’rabet, S., Lgaz, H., El Bachiri, A., & El Harfi, A. (2022). Dyes: classification, pollution, and environmental effects. Dye Biodegradation, Mechanisms and Techniques: Recent Advances, 1-50.

Benzi, C., Bertolino, C. A., Miletto, I., Ponzio, P., Barolo, C., Viscardi, G., . . . Caputo, G. (2009). The design, synthesis and characterization of a novel acceptor for real time polymerase chain reaction using both computational and experimental approaches. Dyes and Pigments, 83(1), 111-120.

BEYTUR, M., & YUKSEK, H. (2022). Density Functional Theory and Ab Initio Hartree-Fock Computational Study of 2-[1-Acetyl-3-Methyl-4, 5-Dihydro-1H-1, 2, 4-Triazol-5-One-4-Yl]-Phenoxyacetic Acide. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 20, 30-42.

Biswas, C., Rao Soma, V., Chetti, P., & Santosh Kumar Raavi, S. (2021). Ultrafast Excited State Relaxation Dynamics of New Fuchsine‐a Triphenylmethane Derivative Dye. ChemPhysChem, 22(24), 2562-2572.

Chakraborty, J. N. (2010a). 15 - Dyeing with acid dye. In J. N. Chakraborty (Ed.), Fundamentals and Practices in Colouration of Textiles (pp. 166-174): Woodhead Publishing India.

Chakraborty, J. N. (2010b). 20 - Dyeing of silk. In J. N. Chakraborty (Ed.), Fundamentals and Practices in Colouration of Textiles (pp. 214-221): Woodhead Publishing India.

Chattopadhyay, D. P. (2011). 4 - Chemistry of dyeing. In M. Clark (Ed.), Handbook of Textile and Industrial Dyeing (Vol. 1, pp. 150-183): Woodhead Publishing.

Chavan, R. B. (2011). 16 - Environmentally friendly dyes. In M. Clark (Ed.), Handbook of Textile and Industrial Dyeing (Vol. 1, pp. 515-561): Woodhead Publishing.

Choudhary, A. S., Patil, S., & Sekar, N. (2015). Condensation pigments for pigment printing of cotton-synthesis, photophysical properties, TD-DFT studies. Fibers and Polymers, 16, 809-818.

Damborsky, J., & Brezovsky, J. (2009). Computational tools for designing and engineering biocatalysts. Current Opinion in Chemical Biology, 13(1), 26-34. doi:https://doi.org/10.1016/j.cbpa.2009.02.021

De Meyer, T. (2016). Experimental and computational study of the pH-sensitive properties of organic dye molecules. Ghent University,

De Meyer, T., Hemelsoet, K., Van Speybroeck, V., & De Clerck, K. (2014). Substituent effects on absorption spectra of pH indicators: An experimental and computational study of sulfonphthaleine dyes. Dyes and Pigments, 102, 241-250.

Deshmukh, M. S., & Sekar, N. N. (2013). A combined experimental and TD-DFT investigation of mono azo disperse dyes. Canadian Chemical Transactions, 1(4), 305-325.

Ebrahimi, H. P., Hadi, J. S., Abdulnabi, Z. A., & Bolandnazar, Z. (2014). Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 485-492. doi:https://doi.org/10.1016/j.saa.2013.08.044

El-Desouky, M., Khalil, M., El-Afify, M., El-Bindary, A., & El-Bindary, M. (2022). Effective methods for removing different types of dyes–modelling analysis, statistical physics treatment and DFT calculations: a review. DESALINATION AND WATER TREATMENT, 280, 89-127.

El-Shafei, A., Hinks, D., & Freeman, H. S. (2011). 7 - Molecular modeling and predicting dye properties. In M. Clark (Ed.), Handbook of Textile and Industrial Dyeing (Vol. 1, pp. 225-244): Woodhead Publishing.

El alamy, A., Bourass, M., Amine, A., Hamidi, M., & Bouachrine, M. (2017). New organic dyes based on phenylenevinylene for solar cells: DFT and TD-DFT investigation. Karbala International Journal of Modern Science, 3(2), 75-82. doi:https://doi.org/10.1016/j.kijoms.2017.03.002

Elhorri, A. M., Belaid, K. D., Zouaoui–Rabah, M., & Chadli, R. (2018). Theoretical study of the azo dyes dissociation by advanced oxidation using Fukui indices. DFT calculations. Computational and Theoretical Chemistry, 1130, 98-106.

Gawale, Y., Jadhav, A., & Sekar, N. (2018). Azo acid dyes based on 2H-Pyrido [1, 2-a] Pyrimidine-2, 4 (3H)-Dione with good tinctorial power and wetfastness-synthesis, photophysical properties, and dyeing studies. Fibers and Polymers, 19, 1678-1686.

Geies, A., Gomaa, G. S., Ibrahim, S. M., Al-Hossainy, A. F., & Abdelwadoud, F. K. (2023). Experimental and simulated TD-DFT study of malachite green dye and tetrahydroquinoxaline hybrid blend: Its application removal from wastewater. Journal of Molecular Structure, 1291, 136050. doi:https://doi.org/10.1016/j.molstruc.2023.136050

Ghanavatkar, C. W., Mishra, V. R., & Sekar, N. (2020). Benzothiazole-pyridone and benzothiazole-pyrazole clubbed emissive azo dyes and dyeing application on polyester fabric: UPF, biological, photophysical and fastness properties with correlative computational assessments. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 230, 118064. doi:https://doi.org/10.1016/j.saa.2020.118064

Improta, R., & Barone, V. (2012). Computational Strategies for Spectroscopy: From Small Molecules to Nano Systems.

Jamil, A., Mehmood, Y., Ali, M., Rafeeq, H., & Jamil, M. I. (2025). Study of Photo-catalytic Degradation of Disperse B-SE2R with UV/H2O2/TiO2 and Solar Light. Atlantic Journal of Life Sciences, 2025(1).

Khan, S. A., Hussain, D., & Khan, T. A. (2021). Recent advances in synthetic dyes. Innovative and Emerging Technologies for Textile Dyeing and Finishing, 91-111.

Laurent, A. D., Adamo, C., & Jacquemin, D. (2014). Dye chemistry with time-dependent density functional theory. Physical Chemistry Chemical Physics, 16(28), 14334-14356. doi:10.1039/C3CP55336A

Louis, H., Enudi, O. C., Odey, J. O., Onyebuenyi, I. B., Igbalagh, A. T., Unimuke, T. O., & Ntui, T. N. (2021). Synthesis, characterization, DFT, and TD-DFT studies of (E)-5-((4, 6-dichloro-1, 3, 5-triazin-2-yl) amino)-4-hydroxy-3-(phenyldiazenyl) naphthalene-2, 7-diylbis (hydrogen sulfite). SN Applied Sciences, 3, 1-14.

Miyah, Y., Benjelloun, M., Salim, R., Nahali, L., Mejbar, F., Lahrichi, A., . . . Zerrouq, F. (2022). Experimental and DFT theoretical study for understanding the adsorption mechanism of toxic dye onto innovative material Fb-HAp based on fishbone powder. Journal of Molecular Liquids, 362, 119739. doi:https://doi.org/10.1016/j.molliq.2022.119739

Mogharbel, R. T., Al-Hossainy, A. F., & Ibrahim, S. M. (2024). TD-DFT calculation, equilibrium and kinetic adsorption study of removal of rose bengal dye by poly vinyl alcohol as a synthetic polymer adsorbent hybrid blend. Journal of Molecular Structure, 1300, 137261. doi:https://doi.org/10.1016/j.molstruc.2023.137261

Nandhikonda, P., Begaye, M. P., Cao, Z., & Heagy, M. D. (2010). Frontier molecular orbital analysis of dual fluorescent dyes: predicting two-color emission in N-aryl-1, 8-naphthalimides. Organic & Biomolecular Chemistry, 8(14), 3195-3201.

Odoemelam, S. A., Emeh, U. N., & Eddy, N. O. (2018). Experimental and computational chemistry studies on the removal of methylene blue and malachite green dyes from aqueous solution by neem (Azadirachta indica) leaves. Journal of Taibah University for Science, 12(3), 255-265.

Omar, A. Z., Mahmoud, M. N., El-Sadany, S. K., Hamed, E. A., & El-atawy, M. A. (2021). A combined experimental and DFT investigation of mono azo thiobarbituric acid based chalcone disperse dyes. Dyes and Pigments, 185, 108887. doi:https://doi.org/10.1016/j.dyepig.2020.108887

Omar, A. Z., Mohamed, M. G., Hamed, E. A., & El-atawy, M. A. (2023). Characterization, DFT calculations and dyeing performance on polyester fabrics of some azo disperse dyes containing pyrazole ring. Journal of Saudi Chemical Society, 27(1), 101594. doi:https://doi.org/10.1016/j.jscs.2022.101594

Oprea, C. I., Panait, P., Cimpoesu, F., Ferbinteanu, M., & Gîrţu, M. A. (2013). Density functional theory (DFT) study of coumarin-based dyes adsorbed on TiO2 nanoclusters—applications to dye-sensitized solar cells. Materials, 6(6), 2372-2392.

Rashid, S., Ali, M., Islam, S., Iqbal, M. O., Al-Rawi, M. B. A., & Naseem, M. (2025). Enhancing the antibacterial properties of silver particles coated cotton bandages followed by natural extracted dye. Journal of Industrial Textiles, 55, 15280837251320571.

Rashid, S., Islam, S., Qamer, S., Ali, M., Fatima, M., Javaid, L., . . . Farooq, A. S. (2025). A review of green synthesized magnesium oxide nanoparticles coated textiles. Journal of Industrial Textiles, 55, 15280837251313518.

Richards, P. R. (2012). 17 - Dye types and application methods. In J. Best (Ed.), Colour Design (pp. 471-496): Woodhead Publishing.

Ripoche, N. (2015). Triphenylmethylium-based multitopic two-photon absorbers: synthesis and characterization. Université Rennes 1; Australian national university,

Sekar, N. (2011). 15 - Acid dyes. In M. Clark (Ed.), Handbook of Textile and Industrial Dyeing (Vol. 1, pp. 486-514): Woodhead Publishing.

Shinde, S., & Sekar, N. (2019). Synthesis, spectroscopic characteristics, dyeing performance and TD-DFT study of quinolone based red emitting acid azo dyes. Dyes and Pigments, 168, 12-27.

Shinde, S. S., Jadhav, A. G., & Sekar, N. (2020). Benzophenone based photostable fluorescent monoazo disperse dyes: Synthesis, AIE, viscosity, UPF and TD-DFT study. SN Applied Sciences, 2, 1-25.

Siddiqua, U. H., Irfan, M., Ali, S., Sahar, A., Khalid, M., Mahr, M. S., & Iqbal, J. (2020). Computational and experimental study of heterofunctional azo reactive dyes synthesized for cellulosic fabric. Journal of Molecular Structure, 1221, 128753. doi:https://doi.org/10.1016/j.molstruc.2020.128753

Sims, M. T., Abbott, L. C., Cowling, S. J., Goodby, J. W., & Moore, J. N. (2016). Molecular design parameters of Anthraquinone dyes for guest–host liquid-crystal applications: Experimental and computational studies of spectroscopy, structure, and stability. The Journal of Physical Chemistry C, 120(20), 11151-11162.

Taharchaouche, D., Latelli, N., Merouani, H., Wahiba, B., Mechehoud, N., Ouddai, N., . . . Chermette, H. (2023). Degradation by hydrolysis of three triphenylmethane dyes: DFT and TD-DFT study. Theoretical Chemistry Accounts, 142(1), 10. doi:10.1007/s00214-022-02950-1

Usman, M., Adeel, S., Haider, W., Ghaffar, A., Rehman, F., & Ali, M. (2016). Dyeing of biotreated and gamma irradiated cotton fabric using direct yellow 12 and direct yellow 27. Journal of Natural Fibers, 13(4), 483-491.

Varghese, J. J., & Mushrif, S. H. (2019). Origins of complex solvent effects on chemical reactivity and computational tools to investigate them: a review. Reaction Chemistry & Engineering, 4(2), 165-206.

Wang, Y.-G. (2009). Examination of DFT and TDDFT methods II. The Journal of Physical Chemistry A, 113(41), 10873-10879.

Xie, B.-B., Xia, S.-H., Liu, L.-H., & Cui, G. (2015). Surface-Hopping Dynamics Simulations of Malachite Green: A Triphenylmethane Dye. The Journal of Physical Chemistry A, 119(22), 5607-5617. doi:10.1021/acs.jpca.5b02549

Yaman, M., İpek Dirin, E., Kaplan, G., Seferoğlu, N., & Seferoğlu, Z. (2022). The synthesis, photophysical properties, DFT study and textile applications of fluorescent azo dyes bearing coumarin-thiazole. Journal of Molecular Liquids, 368, 120718. doi:https://doi.org/10.1016/j.molliq.2022.120718

Yang, C.-Y., Ding, Y.-F., Huang, D., Wang, J., Yao, Z.-F., Huang, C.-X., . . . Dou, J.-H. (2020). A thermally activated and highly miscible dopant for n-type organic thermoelectrics. Nature communications, 11(1), 3292.

Downloads

Published

2025-12-04

Issue

Section

Original research

How to Cite

[1]
Ali, M. et al. 2025. Computational Investigation of Triphenylmethane Acidic Dye for Textile Applications Using DFT and TDDFT Methods. Atlantic Journal of Life Sciences. 2025, 1 (Dec. 2025). DOI:https://doi.org/10.71005/292yr652.