Evaluation of Nutritional Profile, Phytochemical Content, and Antioxidant Potential of Finger Millet Landraces from the Tribal Belt of Chhattisgarh, India
DOI:
https://doi.org/10.71005/vn3wp865Abstract
With global food demand rising and dietary deficiencies widespread, nutrient-dense, climate-resilient crops such as finger millet offer promising alternatives to conventional staples. This study investigates the nutritional composition, phytochemical constituents, and antioxidant potential of 8 finger millet [Eleusine coracana (L.) Gaertn.] landraces cultivated in the tribal regions of Chhattisgarh, India. Our analysis revealed that the landrace F4 possessed the highest amount of protein (10.13 ± 0.12%) and dietary fibre (14.88 ± 0.61%) with low carbohydrate content (56.77 ± 0.86%) in comparison to other landraces. Similarly, calcium content (1477.73 ± 0.37 mg/kg) was found to be higher in F5, whereas the highest iron content (121.38 ± 0.23 mg/kg) was recorded in F7. High levels of phenolics (26.03 ± 0.19 mg GAE/g dw) and flavonoids (35.39 ± 0.76 mg QE/g dw) were observed in F2 landrace, underscoring the potent nutraceutical attributes of this traditional variety. Furthermore, the antioxidant potency was evaluated using DPPH and ABTS radical scavenging assays, with the lowest IC₅₀ values recorded for F2 landrace. The findings highlight the potential of indigenous finger millet landraces to not only combat nutrient deficiencies but also support metabolic health through their antioxidant and functional properties. This also underscores the importance of promoting and conserving traditional millet varieties to enhance nutrition and food security, particularly in underserved tribal communities
References
Abeysekera, W. K. S. M., Jayathilaka, S. I., Abeysekera, W. P. K. M., Senevirathne, I. G. N. H., Jayanath, N. Y., Premakumara, G. A. S., &Wijewardana, D. C. M. S. I. (2022). In vitro determination of anti-lipidemic, anti-inflammatory, and anti-oxidant properties and proximate composition of range of millet types and sorghum varieties in Sri Lanka. Frontiers in Sustainable Food Systems, 6, 884436. https://doi.org/10.3389/fsufs.2022.884436
Abeysekera, W. K. S. M., Jayawardana, S. A. S., Abeysekera, W. P. K. M., Yathursan, S., Premakumara, G. A. S., & Ranasinghe, P. (2017). Antioxidant potential of selected whole grain cereals consumed by Sri Lankans: a comparative in vitro study. Sri Lankan Journal of Biology, 2(2). http://doi.org/10.4038/sljb.v2i2.9
Abioye, V. F., Olatunde, S. J., Ogunlakin, G. O., & Abioye, O. A. (2022). Effect of soaking conditions on chemical composition, antioxidant activity, total phenols, flavonoids and antinutritional contents of finger millet. African Journal of Food, Agriculture, Nutrition and Development, 22(7), 20942-20956.https://doi.org/10.18697/ajfand.112.20480
Ajiboye, A. A., Dedeke, O. A., & Adeyemo, F. C. (2017). Investigation on antioxidants, free radical scavenger and lipid peroxidation activities of whole grains finger millet (Eleusine coracana L.). International Journal of Plant Biology, 8(1). doi:10.4081/pb.2017.6684
Al Alawi, A. M., Majoni, S. W., &Falhammar, H. (2018). Magnesium and human health: perspectives and research directions. International journal of endocrinology, 2018(1), 9041694.https://doi.org/10.1155/2018/9041694
Aydın, T., Gümüştaş, M., Sancı, T. Ö., &Çakır, A. (2024). Herniarin and skimmin coumarins in spice and edible plants and their benefits for health. Studies in Natural Products Chemistry, 81, 339-365.https://doi.org/10.1016/B978-0-443-15628-1.00010-6
Backiyalakshmi, C., Babu, C., Deshpande, S., Govindaraj, M., Gupta, R., Sudhagar, R., Naresh, D., Anitha, S., Peerzada, O., Sajja, S., Singh, K., & Vetriventhan, M. (2024). Characterization of finger millet global germplasm diversity panel for grain nutrients content for utilization in biofortification breeding. Crop Science, August, 64(5), 2569-2588. https://doi.org/10.1002/csc2.21085
Baduni, P., Maikhuri, R. K., Bhatt, G. C., Rawat, H., Singh, R., Semwal, C. P., & Meena, A. K. (2024). Contribution of millets in food and nutritional security to human being: current status and future perspectives. Nat ResourConserv Res, 7(1), 5479.https://doi.org/10.24294/nrcr.v7i1.5479
Banerjee, S., Sanjay, K. R., Chethan, S., & Malleshi, N. G. (2012). Finger millet (Eleusine coracana) polyphenols: Investigation of their antioxidant capacity and antimicrobial activity. African journal of food science, 6(13), 362-374.DOI: 10.5897/AJFS12.031
Behera, M. K. (2017). Assessment of the state of millets farming in India. MOJ Ecology & Environmental Science, 2(1), 16-20.DOI: 10.15406/mojes.2017.02.00013
Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70 -76.https://doi.org/10.1006/abio.1996.0292
Borsoi, F. T., Pastore, G. M., & Arruda, H. S. (2024). Health Benefits of the Alkaloids from Lobeira (Solanum lycocarpum St. Hill): A Comprehensive Review. Plants, 13(10), 1396.https://doi.org/10.3390/plants13101396
Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V., & Pfeiffer, W. H. (2011). Biofortification: a new tool to reduce micronutrient malnutrition. Food and nutrition bulletin, 32(1_suppl1), S31-S40.https://doi.org/10.1177/15648265110321S105
Bursal, E., & Gülçin, İ. (2011). Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food research international, 44(5), 1482-1489.doi:10.1016/j.foodres.2011.03.031
Castelluccio, C., Paganga, G., Melikian, N., Paul Bolwell, G., Pridham, J., Sampson, J., & Rice-Evans, C. (1995). Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. FEBs letters, 368(1), 188-192. https://doi.org/10.1016/0014-5793(95)00639-Q
Casuga, F. P., Castillo, A. L., & Corpuz, M. J. T. (2016). Asian Pacific Journal of Tropical Biomedicine. 6(11), 957–961.
Chethan, S., Dharmesh, S. M., & Malleshi, N. G. (2008). Inhibition of aldose reductase from cataracted eye lenses by finger millet (Eleusine coracana) polyphenols. Bioorganic & medicinal chemistry, 16(23), 10085-10090.
Chandrasekara, A., & Shahidi, F. (2010). Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. Journal of agricultural and food chemistry, 58(11), 6706-6714.https://doi.org/10.1021/jf100868b
CI, K. C., & Indira, G. (2016). Quantitative estimation of total phenolic, flavonoids, tannin and chlorophyll content of leaves of Strobilanthes Kunthiana (Neelakurinji). J. Med. Plants, 4(4), 282-286.
Cuvelier, M. E., Richard, H., & Berset, C. (1992). Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. Bioscience, biotechnology, and biochemistry, 56(2), 324-325. https://doi.org/10.1271/bbb.56.324
David, B. M., Michael, A., Doyinsola, O., Patrick, I., & Abayomi, O. (2014). Proximate composition, mineral and phytochemical constituents of Eleusine coracana (finger millet). International Journal of Advanced Chemistry, 2(2), 171-174.doi: 10.14419/ijac.v2i2.3496
Durairaj, M., Gurumurthy, G., Nachimuthu, V., Muniappan, K., & Balasubramanian, S. (2019). Dehulled small millets: The promising nutricereals for improving the nutrition of children. Maternal & child nutrition, 15, e12791.DOI: 10.1111/mcn.12791
Dykes, L., & Rooney, L. W. (2006). Sorghum and millet phenols and antioxidants. Journal of cereal science, 44(3), 236-251.doi:10.1016/j.jcs.2006.06.007
Dubey, S. K., Mansoori, A., Mohan, M., Sharma, K., & Kumar, A. (2023). Hedychium coronarium flower extract modulates rice plant photosystem II and antioxidant enzymes activity to induce resistance against bacterial blight. Physiological and Molecular Plant Pathology, 127, 102114.https://doi.org/10.1016/j.pmpp.2023.102114
Faizan, S., Mohsen, M. M. A., Amarakanth, C., Justin, A., Rahangdale, R. R., Chandrashekar, H. R., & Kumar, B. P. (2024). Quinone scaffolds as potential therapeutic anticancer agents: Chemistry, mechanism of Actions, Structure-Activity relationships and future perspectives. Results in Chemistry, (7) 101432. https://doi.org/10.1016/j.rechem.2024.101432
Fink, G., &Heitner, J. (2014). Evaluating the cost-effectiveness of preventive zinc supplementation. BMC Public Health, 14, 1-10.doi:10.1186/1471-2458-14-852
Gaithersburg, M. (2016). Official methods of analysis. Association of official analytical chemists (20th ed.). USA: AOAC International.
Govindarajan, R., Rastogi, S., Vijayakumar, M., Shirwaikar, A., Rawat, A. K. S., Mehrotra, S., &Pushpangadan, P. (2003). Studies on the antioxidant activities of Desmodiumgangeticum. Biological and pharmaceutical Bulletin, 26(10), 1424-1427.doi: 10.1248/bpb.26.1424
Harborne, A. J. (1998). Phytochemical methods a guide to modern techniques of plant analysis. springer science & business media.
He, F. J., & MacGregor, G. A. (2008). Beneficial effects of potassium on human health. Physiologia plantarum, 133(4), 725-735.https://doi.org/10.1111/j.1399-3054.2007.01033.x
Hiremath, N., Netravati Hiremath, C., Geetha, K., & Vikram, S. (2018). Antioxidant property of finger millet (Eleusine coracana L.). ~ 793 ~ Journal of Pharmacognosy and Phytochemistry, 1, 793–795.
Hithamani, G., & Srinivasan, K. (2014). Effect of domestic processing on the polyphenol content and bioaccessibility in finger millet (Eleusine coracana) and pearl millet (Pennisetum glaucum). Food Chemistry, 164, 55-62.https://doi.org/10.1016/j.foodchem.2014.04.107
Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of agricultural and food chemistry, 53(6), 1841-1856. Doi.10.1021/jf030723c
Hummer, K. E. (2015). In the footsteps of vavilov: Plant diversity then and now. HortScience 50, 784–788. doi: 10.21273/hortsci.50.6.784
Horwitz, W., & Latimer, G. W. (2000). Association of official analytical chemists. Gaithersburg, MD, USA.
Islam, M. S. (2019). Sensing and uptake of nitrogen in rice plant: a molecular view. Rice Science, 26 (6), 343-355.http://dx.doi.org/10.1016/j.rsci.2018.12.007
Jayasinghe, M. A., Ekanayake, S., & Nugegoda, D. B. (2013). Effect of different milling methods on glycaemic response of foods made with finger millet (Eucenea coracana) flour. The Ceylon Medical Journal, 58(4), 148–152. https://doi.org/10.4038/cmj.v58i4.6305
Jayawardana, S. A. S., Samarasekera, J. K. R. R., Hettiarachchi, G. H. C. M., Gooneratne, J., Choudhary, M. I., & Jabeen, A. (2021). Anti‐inflammatory and Antioxidant Properties of Finger Millet (Eleusine coracana (L.) Gaertn.) Varieties Cultivated in Sri Lanka. BioMed Research International, 2021(1), 7744961.https://doi.org/10.1155/2021/7744961
Jayawardana, S. A. S., Samarasekera, J. K. R. R., Hettiarachchi, G. H. C. M., Gooneratne, J., Mazumdar, S. D., & Banerjee, R. (2019). Dietary fibers, starch fractions and nutritional composition of finger millet varieties cultivated in Sri Lanka. Journal of Food Composition and Analysis, 82, 103249.https://doi.org/10.1016/j.jfca.2019.103249
Jayawardana, N., Wimalasiri, K. M. S., Samarasinghe, G., & Madhujith, T. (2018). Bound and total phenolic contents and antioxidant potential of selected Sri Lankan millet varieties. Tropical Agricultural Research, 29(3).https://doi.org/10.4038/tar.v29i3.8270
Jideani, I. A. (2012). Digitaria exilis (acha/fonio), Digitariaiburua (iburu/fonio) and Eluesine coracana (tamba/finger millet)–Non-conventional cereal grains with potentials. Scientific Research and Essays, 7(45), 3834-3843. DOI: 10.5897/SRE12.416
Jolly, A., Hour, Y., & Lee, Y. C. (2024). An outlook on the versatility of plant saponins: a review. Fitoterapia, 174, 105858.https://doi.org/10.1016/j.fitote.2024.105858
Jorapur, Y. R., Chaudhari, N., Kulkarni, A., Chatterjee, T., & Sulbha, G. (2024). Chemical , Nutritional , and Biomolecular Characteristics of Finger Millet ( Eleusinecoracana L .). AFJBS 12, 967–977. https://doi.org/10.48047/AFJBS.6.12.2024.967-977
Kavitha, M.S. Prema. L. (1995). Post prandial blood glucose response to meals containing different CHO in diabetics.Indian Journal of Nutrition and Dietetics, 32, 123–127.
Kayser, E., Finet, S. E., & de Godoy, M. R. (2024). The role of carbohydrates in canine and feline nutrition. Animal Frontiers, 14(3), 28-37. https://doi.org/10.1093/af/vfae017
Kazi, T. S., Laware, S. L., &Auti, S. G. (2022). Analysis of nutritional diversity and antioxidant activity of finger millet landraces. Indian Journal of Agricultural Research, 56(1), 1-6.https://doi.org/10.18805/IJARe.A-5741
Kumar, A., Gul, M. Z., Zeeshan, A., Bimolata, W., Qureshi, I. A., & Ghazi, I. A. (2013). Differential antioxidative responses of three different rice genotypes during bacterial blight infection. Australian Journal of Crop Science, 7(12), 1893-1900.
Kumar, A., Rani, M., Mani, S., Shah, P., Singh, D. B., Kudapa, H., & Varshney, R. K. (2021). Nutritional significance and antioxidant-mediated antiaging effects of finger millet: Molecular insights and prospects. Frontiers in Sustainable Food Systems, 5, 684318.https://doi.org/10.3389/fsufs.2021.684318
Kumari, D., Madhujith, T., & Chandrasekara, A. (2017). Comparison of phenolic content and antioxidant activities of millet varieties grown in different locations in Sri Lanka. Food science & nutrition, 5(3), 474-485. https://doi.org/10.1002/fsn3.415
Kumari, M., & Jain, S. (2015). Screening of potential sources of tannin and its therapeutic application. Int. J. Nutr. Food Sci, 4(2-1), 26-29.doi: 10.11648/j.ijnfs.s.2015040201.15
Lansakara, L. H. M. P. R., Liyanage, R., Perera, K. A., Wijewardana, I., Jayawardena, B. C., &Vidanarachchi, J. K. (2016). Nutritional composition and health related functional properties of Eleusine coracana (Finger Millet). Procedia Food Science, 6, 344-347.doi:10.1016/j.profoo.2016.02.069
Leong, L. P., & Shui, G. (2002). An investigation of antioxidant capacity of fruits in Singapore markets. Food chemistry, 76(1), 69-75.https://doi.org/10.1016/S0308-8146(01)00251-5
Li, W., Yu, Y., Wang, L., Luo, Y., Peng, Y., Xu, Y., ... & Yan, J. (2021). The genetic architecture of the dynamic changes in grain moisture in maize. Plant biotechnology journal, 19(6), 1195-1205.doi: 10.1111/pbi.13541
Liu, G., Xia, N., Tian, L., Sun, Z., & Liu, L. (2022). Progress in the Development of Biosensors Based on Peptide–Copper Coordination Interaction. Biosensors, 12(10), 809.https://doi.org/10.3390/bios12100809
Liu, X., Kim, J. K., Li, Y., Li, J., Liu, F., & Chen, X. (2005). Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-L1 cells. The Journal of nutrition, 135(2), 165-171.https://doi.org/10.1093/jn/135.2.165
Ludwig, D. S., Hu, F. B., Tappy, L., & Brand-Miller, J. (2018). Dietary carbohydrates: role of quality and quantity in chronic disease. Bmj, 361.doi: 10.1136/bmj.k2340 1
Magan, N., Hope, R., Cairns, V., & Aldred, D. (2003). Post-harvest fungal ecology: impact of fungal growth and mycotoxin accumulation in stored grain. Epidemiology of Mycotoxin Producing Fungi: Under the aegis of COST Action 835 ‘Agriculturally Important Toxigenic Fungi 1998–2003’, EU project (QLK 1-CT-1998–01380), 723-730.https://doi.org/10.1007/978-94-017-1452-5_7
Maharajan, T., Ceasar, S. A., & Ajeesh Krishna, T. P. (2022). Finger millet (Eleusine coracana (L.) Gaertn): Nutritional importance and nutrient transporters. Critical Reviews in Plant Sciences, 41(1), 1-31.https://doi.org/10.1080/07352689.2022.2037834
Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American journal of clinical nutrition, 79(5), 727-747. https://doi.org/10.1093/ajcn/79.5.727
Manjula, K., Bhagath, Y. B., & Nagalakshmi, K. (2015). Effect of radiation processing on bioactive components of finger millet flour (Eleusine coracana L.). International Food Research Journal, 22(2), 556–560.
Mania, M., Rebeniak, M., Orshulyak, O., & Postupolski, J. (2020). Assessment of exposure to nickel intake with selected cereal grains and cereal-based products. Roczniki Państwowego Zakładu Higieny,4, 71–85.https://doi.org/10.32394/rpzh.2020.0142
Mansoori, A., Dwivedi, A., Sharma, K., Dubey, S. K., Thakur, T. K., & Kumar, A. (2022). Identification of potential inhibitors from urginea indica metabolites against xanthomonas oryzae pv. oryzae and magnaporthe oryzae receptors. Frontiers in Agronomy, 4, 922306.https://doi.org/10.3389/fagro.2022.922306
Marcocci, L., Maguire, J. J., Droylefaix, M. T., & Packer, L. (1994). The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochemical and biophysical research communications, 201(2), 748-755.https://doi.org/10.1006/bbrc.1994.1764
Morishita, T., Ishiguro, K., Noda, T., & Suzuki, T. (2020). The effect of grain moisture contents on the roll milling characteristics of Tartary buckwheat cultivar ‘Manten-Kirari’. Plant Production Science, 23(4), 539-546.https://doi.org/10.1080/1343943X.2020.1747358
Mueller, M., Hobiger, S., & Jungbauer, A. (2010). Anti-inflammatory activity of extracts from fruits, herbs and spices. Food chemistry, 122(4), 987-996.doi:10.1016/j.foodchem.2010.03.041
Naik, G. H., Priyadarsini, K. I., Satav, J. G., Banavalikar, M. M., Sohoni, D. P., Biyani, M. K., & Mohan, H. (2003). Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. Phytochemistry, 63(1), 97-104.
Namiki, M. (1990). Antioxidants/antimutagens in food. Critical Reviews in Food Science & Nutrition, 29(4), 273-300.https://doi.org/10.1080/10408399009527528
Obaid A Alharbi, H., Almatroudi, A., Alrumaihi, F., Fahad Alghafis, S., Alwanian, W. M., & Rahmani, A. H. (2024). The potential role of luteolin, a flavonoid in cancer prevention and treatment. CyTA-Journal of Food, 22(1), 2381714.DOI:10.1080/19476337.2024.2381714
Ofosu, F. K., Elahi, F., Daliri, E. B. M., Chelliah, R., Ham, H. J., Kim, J. H., ... & Oh, D. H. (2020). Phenolic profile, antioxidant, and antidiabetic potential exerted by millet grain varieties. Antioxidants, 9(3), 254. https://doi.org/10.3390/antiox9030254
Oktay, M., Gülçin, İ., &Küfrevioğlu, Ö. İ. (2003). Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT-Food Science and Technology, 36(2), 263-271.https://doi.org/10.1016/S0023-6438(02)00226-8
Onipe, O. O., &Ramashia, S. E. (2022). Finger millet seed coat—a functional nutrient-rich cereal by-product. Molecules, 27(22), 7837.https://doi.org/10.3390/molecules27227837
Palma, M. N. N., Rocha, G. C., Valadares Filho, S. C., & Detmann, E. (2015). Evaluation of acid digestion procedures to estimate mineral contents in materials from animal trials. Asian-Australasian Journal of Animal Sciences, 28(11), 1624.http://dx.doi.org/10.5713/ajas.15.0068
Panwar, P., Dubey, A., & Verma, A. K. (2016). Evaluation of nutraceutical and antinutritional properties in barnyard and finger millet varieties grown in Himalayan region. Journal of food science and technology, 53, 2779-2787.DOI 10.1007/s13197-016-2250-8
Panwar, S., Sindhu, R., Gehlot, R., . R., & Kumari, A. (2024). Physico-chemical properties and nutritional composition of finger millet grains. International Journal of Advanced Biochemistry Research, 8(8), 633–635.https://doi.org/10.33545/26174693.2024.v8.i8h.1821
Pears G.S., Bindu K.H., Devi I., Tejaswini I.S., Sastry V.G. (2023). Phytochemical Investigation and Cytotoxic Activity of Methanolic Extract of Eleusine Coracana. Journal of Chemical Health Risks 13(4), 1144-1151
Prasad, M. E., Arunachalam, A., and Gautam, P. (2020). Millet: A nutraceutical grain that promises nutritional security. Eco. Env. Cons. 26, S1–S6. Available at: https://www.researchgate.net/publication/354890664
Pravina, P., Sayaji, D., & Avinash, M. (2013). Calcium and its role in human body. International Journal of Research in Pharmaceutical and Biomedical Sciences, 4(2), 659-668.
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, 269(2), 337-341.
Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of agricultural and food chemistry, 53(10), 4290-4302. https://doi.org/10.1021/jf0502698
Pyrzynska, K., &Pękal, A. (2013). Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food samples. Analytical Methods, 5(17), 4288-4295.https://doi.org/10.1039/c3ay40367j
Ramachandra, G., Virupaksha, T. K., & Shadaksharaswamy, M. (1977). Relation between tannin levels and in vitro protein digestibility in finger millet (Eleusine coracana Gaertn.). Journal of Agricultural and Food Chemistry, 25(5), 1101-1104. https://doi.org/10.1021/jf60213a046
Ramashia, S. E., Anyasi, T. A., Gwata, E. T., Meddows-Taylor, S., &Jideani, A. I. O. (2019). Processing, nutritional composition and health benefits of finger millet in sub-saharan Africa. Food Science and Technology, 39, 253-266.https://doi.org/10.1590/fst.25017
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237.https://doi.org/10.1016/S0891-5849(98)00315-3
Roghini, R., & Vijayalakshmi, K. (2018). Phytochemical screening, quantitative analysis of flavonoids and minerals in ethanolic extract of Citrus paradisi. International Journal of Pharmaceutical Sciences and Research, 9(11), 4859-4864.https://doi.org/10.13040/IJPSR.09758232.9(11).4859-64
Saha, R., Majie, A., Baidya, R., & Sarkar, B. (2024). Verbascoside: comprehensive review of a phenylethanoid macromolecule and its journey from nature to bench. Inflammopharmacology, 32(5), 2729-2751.https://doi.org/10.1007/s10787-024-01555-3
Salminen, A., Lehtonen, M., Suuronen, T., Kaarniranta, K., & Huuskonen, J. (2008). Terpenoids: natural inhibitors of NF-κB signaling with anti-inflammatory and anticancer potential. Cellular and Molecular Life Sciences, 65, 2979-2999.DOI 10.1007/s00018-008-8103-5
Sanders, T. A. (2024). Introduction: the role of fats in human diet. Functional dietary lipids, 1-28.https://doi.org/10.1016/B978-0-443-15327-3.00007-0
Sguizzato, M., Martini, P., Marvelli, L., Pula, W., Drechsler, M., Capozza, M., ... & Boschi, A. (2022). Synthetic and nanotechnological approaches for a diagnostic use of manganese. Molecules, 27(10), 3124.https://doi.org/10.3390/molecules27103124
Shahidi, F., &Naczk, M. (2003). Phenolics in food and nutraceuticals. CRC press.https://doi.org/10.1201/9780203508732
Siddiqui, T., Khan, M. U., Sharma, V., & Gupta, K. (2024). Terpenoids in essential oils: Chemistry, classification, and potential impact on human health and industry. Phytomedicine plus, 4(2), 100549.https://doi.org/10.1016/j.phyplu.2024.100549
Singh, N., Mansoori, A., Jiwani, G., Solanke, A. U., Kumar, R., & Kumar, A. (2021). Evaluation of antioxidant and antimicrobial potential of Thespesia lampas root extracts. Journal of experimental biology and agricultural sciences, 9(1), 87-99.https://doi.org/10.18006/2021.9(1).87.99
Singleton, V. L., Orthofer, R., &Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology (Vol. 299, pp. 152-178). Academic press.https://doi.org/10.1016/S0076-6879(99)99017-1
Sreejayan, X. X., & Rao, M. N. A. (1997). Nitric oxide scavenging by curcuminoids. Journal of pharmacy and Pharmacology, 49(1), 105-107. https://doi.org/10.1111/j.2042-7158.1997.tb06761.x
Sreeramulu, D., Reddy, C., & Raghunath, M. (2009). Antioxidant activity of commonly consumed cereals, millets, pulses and legumes in India. Indian Journal of Biochemistry and Biophysics, 46(1), 112–115.
Stoker, H. S., & Seager, S. L. (1976). Environmental Chemistry-Air and Water Chemistry. Scott, Foresman and Company, Glenview, Illinois., 1, 21–29.
Viswanath, V., Urooj, A., & Malleshi, N. G. (2009). Evaluation of antioxidant and antimicrobial properties of finger millet polyphenols (Eleusine coracana). Food Chemistry, 114(1), 340-346.doi:10.1016/j.foodchem.2008.09.053
Volek, J. S., Yancy, W. S., Gower, B. A., Phinney, S. D., Slavin, J., Koutnik, A. P., Hurn, M., Spinner, J., Cucuzzella, M., & Hecht, F. M. (2024). Expert consensus on nutrition and lower-carbohydrate diets: An evidence-and equity-based approach to dietary guidance. Frontiers in Nutrition, 11, 1376098. 1–10. https://doi.org/10.3389/fnut.2024.1376098
Wambi, W., Otienno, G., Tumwesigye, W., & Mulumba, J. (2021). Genetic and genomic resources for finger millet improvement: opportunities for advancing climate-smart agriculture. Journal of Crop Improvement, 35(2), 204-233. https://doi.org/10.1080/15427528.2020.1808133
Weyh, C., Krüger, K., Peeling, P., & Castell, L. (2022). The role of minerals in the optimal functioning of the immune system. Nutrients, 14(3), 644. https://doi.org/10.3390/nu14030644
Wu, G. (2016). Dietary protein intake and human health. Food and Function. https://doi.org/10.1039/c5fo01530h
Xiang, J., Apea-Bah, F. B., Ndolo, V. U., Katundu, M. C., & Beta, T. (2019). Profile of phenolic compounds and antioxidant activity of finger millet varieties. Food chemistry, 275, 361-368.https://doi.org/10.1016/j.foodchem.2018.09.120